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Frequency-domain modeling of TM wave
propagation in optical nanostructures
with a third-order nonlinear response
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An enhanced method is developed for analysis of third-order nonlinearities in optical nanostructures with a
scalar magnetic field frequency-domain formulation; it is shown to produce fast and accurate results for 2D
problems without a superfluous vector electric field formalism. While a standard TM representation using
cubic nonlinear susceptibility results in an intractable implicit equation, our technique alleviates this prob-
lem. In addition to a universal approach, simpler, more efficient solutions are proposed for media having
solely either a real (lossless Kerr-type medium) or an imaginary (nonlinear absorbing medium) nonlinearity.
Combining these solutions with a finite-element method, we show simulation examples validated with al-
ternative approaches. © 2009 Optical Society of America
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In the past few years, a number of unusual nonlinear
(NL) wave interactions were predicted to occur in
metamaterials. In a majority of theoretical studies to
date, NL metamaterials were considered uniform me-
dia with a prescribed dielectric permittivity and mag-
netic permeability, and the nanostructured nature of
these artificial materials was not taken into account.
Local field enhancement and other effects are likely
to alter NL interactions of electromagnetic waves
with metamaterials. Therefore, the availability of ef-
ficient and reliable numerical modeling tools taking
into account an actual nanostructure and near-field
effects are essential for developing future applica-
tions of metamaterials.

Several advanced approaches have been demon-
strated for solving the problem of strongly NL media
[1–5], where the solution of the wave equation in an
arbitrary layer of a lamellar structure is based on a
method of single expression and where the more tra-
ditionally accepted superposition of counterpropagat-
ing waves is not exploited. The method of single ex-
pression uses integration starting from the shadow
side, thereby reducing a complex multiboundary
problem to a Cauchy problem, with no approximation
in the boundary conditions for the electromagnetic
field and with no constrains on the form of the wave
equation solution that is required by more tradi-
tional, earlier methods [6–8].

Unfortunately, none of the above references [1–8]
deal with the finite-element (FE) analysis of light
propagation in subwavelength lamellar structures
with nanoscale plasmonic inclusions. At the same
time, the FE method is widely used for detailed lin-
ear and NL simulations of complex scattering geom-
etries in the microwave and optical range [9]. The dif-
ficulties of linear FE modeling of dispersive optical
metamaterials has been discussed, for example, in
[10], but the caveats of NL FE modeling of 2D struc-

tures for TM waves utilizing a scalar magnetic field
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(H-field) wave equation have not been considered
yet.

In this Letter, an efficient method is developed for
introducing third-order nonlinearities in optical
nanostructured materials, including photonic
metamaterials. The method uses scalar H-field
frequency-domain formulation; it is shown to produce
fast and accurate results without a superfluous vec-
tor electric field (E-field) formalism. A standard TM
representation using cubic NL susceptibility is prob-
lematic because of an intractable implicit equation.
To alleviate this problem, simplified solutions are de-
rived for a lossless Kerr-type medium and an NL ab-
sorbing medium. For a lossless Kerr-type medium a
comprehensive simulation example is validated and
discussed.

Consider the propagation of a monochromatic wave
of frequency � (time-dependent term e−��t is omitted)
in a medium with a third-order susceptibility ��3� (or
coefficient n2) given by

�r = �l + 3��3��E� �2 = �l�1 + 4n2�−1�E� �2�. �1�

Here, �r is the relative permittivity, �l is the linear
permittivity, �= ��0 /�0�1/2 is free-space impedance,
with �0 and �0 being the permittivity and permeabil-
ity of vacuum, and E� is the E-field strength vector.

In a frequency-domain formulation and a 2D geom-
etry, the Maxwell equations reduce to a single scalar
wave equation for the out-of-plane field component.
For TE modes, where only a scalar E-field is em-
ployed, incorporating the nonlinearity, Eq. (1), is
quite simple. However, for TM modes, relevant for
resonant plasmonic structures, the wave equation for
the out-of-plane H-field, H� = ẑh�x ,y ;��, is � · ��r

−1�h�
+k2�rh=0, where �r is the relative permeability and

�
c=1/ �0�0 and k=� /c are the speed of light and the
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wavenumber in vacuum, respectively. Since the
E-field components depend on h through the curl
equation

E� = ����0�r�−1 � h � ẑ, �2�

combining Eqs. (1) and (2) and utilizing f=3���3����h
� ẑ�2���0�−2, �=arg ��3�, yields an implicit form,

�r = �l + fe��/��r�2, �3�

(or �r��r�2−�l��r�2= fe��), which substantially restrains
any straightforward numerical implementation of
the third-order NL effects in a standard scalar
frequency-domain simulation scheme.

We note that this problem does not appear in a 3D
frequency-domain formulation, with a 2D geometry
treated by using a vector E-field formulation [9], nor
in a 3D time-domain formulation with a coupled sys-
tem of partial differential equations for E and H
fields. However, 3D methods exhibit significant re-
dundant complexity compared with the scalar
frequency-domain formulation of 2D geometries and
are substantially less efficient for computationally
expensive problems, especially with multiphysics
content, where coupled NL phenomena are solved
consistently. To circumvent this redundancy, we solve
the resulting cubic equation (3) for �r in terms of the
H-field and ��3�.

Although a general solution of Eq. (3) can be
readily obtained, it requires a detailed ad hoc analy-
sis depending on the linear loss (or gain) and a spe-
cific type of NL effect, and it is not presented here. In
this Letter, we discuss two major H-field formula-
tions for the most frequent situations in optical
metamaterials, when the linear absorption of a given
nanostructured elemental NL material is negligible,
Im��l�=0, and the elemental NL material exhibits ei-
ther a purely real (lossless Kerr-type medium, �=0)
or purely imaginary (NL absorber, �=	 /2) third-
order nonlinearity. These assumptions allow Eq. (3)
to be solved with the Chebyshev (trigonometric) ap-
proach [11].

We define �r= �1+u�v, 
=2+ fv−3, and v=�l /3. Sub-
stituting into Eq. (4) yields a Chebyshev form, u3

−3u=
 [2]. The real root for 
� �2,�� is u
=2 cosh� 1

3 cosh−1� 1
2
�� so that

�r = v + 2v cosh�1

3
cosh−1




2� = �1 + a + a−1�v, �4�

where a=� 1
2 �
+�
2−4��1/3.

Separating the real part �r�=�l and the imaginary
part �r� of the permittivity yields the depressed cubic
formula ��r��

3+�l
2�r�= f. After substituting �r�=vu, 


= fv−3, and v=�l /�3, the latter equation arrives at an-
other Chebyshev form, u3+3u=
, with the only rel-
evant root being u=2 sinh� 1

3 sinh−1� 1
2
�� [12]. Hence,

�r = �l + �2v sinh�1

3
sinh−1




2� = �l + ��b − b−1�v.

�5�

� 1 � 2 �1/3
Here b= 2 �
+ 
 +4� .
The simulation results, performed by using a com-
mercial FE solver (COMSOL Multiphysics), were
validated in two stages. First, we considered a plane
wave normally incident on a uniform NL film. The so-
lution obtained with the 2D scalar H-field formula-
tion, d��−1dh /dx� /dx+k2�0h=0, was found to be in
complete agreement with the solution obtained for
the 2D scalar E-field formulation, as well as with the
reference solution from an alternative NL 1D solver
[13]. Second, the solution for the 2D nanostructures
described below was found to be in excellent agree-
ment with simulations performed for the same 2D ge-
ometries by using the 3D vector E-field formulation
with the nonlinearity defined directly as in Eq. (1).

We now use the scalar H-field formulation to exam-
ine the NL response of metamagnetics, well-studied
magnetically resonant arrays of coupled nanostrip
pairs [14]. This structure consists of a sandwich of
two thin metallic strips separated by a thin dielectric
spacer and can exhibit a negative magnetic response
ranging from the mid-IR to the visible. The exact ge-
ometry and material parameters used in the current
example are the same as sample D of [14] except that
the strips are covered by a 160 nm layer (cladding) of
a Kerr material �Im�n2�=0�, and hence Eq. (4) was
embedded in the FE simulations. The transmission
and reflection scattering data of the structure are
shown in Fig. 1(a). The structure exhibits a reso-
nance of a magnetic nature at 698 nm.

Field maps show that, across the visible and
near-IR range, the E-field between the strips is lo-
cally enhanced by up to �	5–15, where �

�E� / �Einc� is the near-field enhancement factor. In
addition, the E-field at the boundary of the spacer is
enhanced by a more modest average value of �2

���2dl /�dl�1/2	2–4; see Fig 1(c). Thus, since the
wavelength of the magnetic resonance, 
m, is sensi-
tive to the value of the permittivity at the boundary
of the spacer [15], the latter enhancement can be ex-
ploited in order to modify 
m through the Kerr re-
sponse of the cladding. Indeed, for a nonlinearity of
n2Iinc=0.0013, we observe a shift of 	6 nm in the lo-
cation of the maximum (minimum) in the reflectance
(transmittance) spectrum [Fig. 1(b)]. For this nonlin-
earity, the change in the index of refraction is 
n

�2

2n2Iinc�0.006–0.02. Interestingly, we note that
the maximal average enhancement is about 50 nm

Fig. 1. (Color online) Simulation results for coupled
nanostrip pairs covered with a n0=1.53 Kerr material. (a)
Transmission T0,2 and reflection R0,2 spectra for the linear
(T0, R0, solid) and NL (T2, R2, dashed, n2Iinc=0.0013) cases.
(b) Same as (a); enlargement of the resonance range. (c) Av-

erage enhancement �2 over the spacer boundary.



3366 OPTICS LETTERS / Vol. 34, No. 21 / November 1, 2009
away from the resonance, where maximal local en-
hancement of the H-field is attained.

For the same structure, a comparable shift was ob-
tained experimentally by thermal tuning of the index
of refraction of a liquid crystal cladding [15]. Tuning
of the magnetic-resonance frequency of an analogous
structure, split-ring arrays covered with a Kerr ma-
terial, was studied in [16,17] by using a quasi-static
analysis. In particular, it was shown that for nonlin-
earities as small as 10−4–10−5, the magnetic-
resonance frequency may be tuned by a few percent
and may even exhibit a bistable behavior. Our full-
wave simulations thus provide a qualitative valida-
tion of the quasi-static analysis.

The above simple model using our new approach
has also been compared with a corresponding model
utilizing a vector E-field formulation with the same
number of elements (934 FEs) and an identical mesh
topology. As a result, the scalar H-field formulation
requires only 8815 variables (degrees of freedom)
with third-order (cubic) scalar elements or 24,031 de-
grees of freedom for fifth-order (quintic) scalar ele-
ments. The vector E-field formulation requires as
many as 95,325 degrees of freedom with cubic vector
elements [10]. Using the same nonparallelized solver
for the above example, the scalar H-field formulation
gives the solution approximately four times faster be-
tween the resonances (and about five times faster
near the resonances) in comparison with the corre-
sponding vector E-field models. Such computational
efficacy is especially useful for evolution-driven opti-
mization techniques [18] and coupled multiphysics
problems. The nonlinearities used in our simulations
are available either from fast electronic nonlineari-
ties of organic materials [19] and semiconductors or
alternatively, from slow reorientation (e.g., in liquid
crystal) and thermal nonlinearities [20].

The universal approach built on the solution of the
implicit equation for the nonlinear dielectric function
is shown in [21], where all important features of the
method are analyzed using as an example a more
general cubic nonlinearity.

In this Letter, the basic case of lossless linear sus-
ceptibility in combination with either purely real or
purely imaginary cubic susceptibility has been de-
rived and tested.

In addition to the example shown in the Letter in
[21] detailed simulation results are obtained for a
nonlinear focusing device with optically controlled
isotropic Kerr-type nonlinearity (embedding a NL
material in the subwavelength slits of the thick silver
film is proposed as a new method of all-optical control
of the output beam). The device geometry and mate-
rial parameters are adapted from [22]. The core prin-
ciples, activation of the slit polaritonic modes and
consequent tunable beam focusing, are obtained in
[21] also using the proposed approach in a finite-
element frequency-domain modeling environment. As
in this Letter, the simulation results prove the pre-
dicted functioning of the device tested with our scalar
H-field formulation.

In summary, we have proposed a versatile numeri-
cal approach for modeling third-order NL interac-
tions in optical nanostructures. This method elimi-
nates the need for time-consuming 3D full-wave
simulations in many cases of practical interest such
as TM wave interaction with plasmonic nanostruc-
tures.
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